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Abstract

Overwhelming evidence has shown that, from the Industrial Revolution to the present, human 

activities influence ground-level ozone (O3) concentrations. Past studies demonstrate links 

between O3 exposure and health. However, knowledge gaps remain in our understanding 

concerning the impacts of climate change mitigation policies on O3 concentrations and health. 

Using a hybrid downscaling approach, we evaluated the separate impact of climate change and 

emission control policies on O3 levels and associated excess mortality in the US in the 2050s 

under two Representative Concentration Pathways (RCPs). We show that, by the 2050s, under 

RCP4.5, increased O3 levels due to combined climate change and emission control policies, could 

contribute to an increase of approximately 50 premature deaths annually nationwide in the US. 

The biggest impact, however, is seen under RCP8.5, where rises in O3 concentrations are expected 

to result in over 2,200 additional premature deaths annually. The largest increases in O3 are seen in 

RCP8.5 in the Northeast, the Southeast, the Central, and the West regions of the US. Additionally, 

when O3 increases are examined by climate change and emissions contributions separately, the 

* Corresponding author at: Department of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton 
Road NE, Atlanta, GA, United States. yang.liu@emory.edu (Y. Liu).
Author contributions
YL conceived the study. JDS and YK conducted the data collection and analysis. JDS completed the manuscript. All authors 
commented on the manuscript and gave approval to the final version of the manuscript.

Conflicts of interest
The authors of this manuscript have no competing associations or conflicts of interest pertaining to this study.

Appendix A. Supplementary data
Supplementary data to this article can be found online at http://dx.doi.org/10.1016/j.envint.2017.08.001.

HHS Public Access
Author manuscript
Environ Int. Author manuscript; available in PMC 2021 May 31.

Published in final edited form as:
Environ Int. 2017 November ; 108: 41–50. doi:10.1016/j.envint.2017.08.001.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://dx.doi.org/10.1016/j.envint.2017.08.001


benefits of emissions mitigation efforts may significantly outweigh the effects of climate change 

mitigation policies on O3-related mortality.
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1. Introduction

Since the Clean Air Act of 1970, atmospheric ozone (O3) concentrations have declined in 

the US. Nevertheless, the American Lung Association reported that, as of 2013, over 138 

million people in the US (~44%) continue to live in areas where O3 levels exceed regulatory 

standards (ALA, 2015). Among common air pollutants that impact public health, O3 is one 

of the most detrimental. Risk of O3-related adverse outcomes is a public health concern due 

to widespread O3 exposure, which is ubiquitous in industrialized regions. Research has 

consistently linked O3 exposure to a variety of adverse health outcomes including increased 

emergency room (ER) visits and hospitalizations, asthma exacerbation, cardiovascular stress, 

impaired lung function, and premature death (Bell et al., 2005; Bell et al., 2007; Bell et al., 

2004; Bernard et al., 2001; Jackson et al., 2010; Post et al., 2012; Tagaris et al., 2009; Levy 

et al., 2005; Gryparis et al., 2004; Stieb et al., 2009; Jerrett et al., 2009). Multiple studies 

have demonstrated the connections between climate change to O3 concentrations and these 

potential health outcomes. For example, Tagaris et al. found the highest climate-induced O3 

increases coincided with the most densely populated areas in the US and increases in 

national premature mortality of approximately 300 additional deaths annually (Tagaris et al., 

2009). Bell et al. also showed that climate change-induced O3 increases are associated with 

significant increases in premature mortality and ER/hospital admissions (Bell et al., 2007; 

Bell et al., 2004). Additionally, by comparing future O3 concentrations and associated 

adverse health outcomes from seven published studies, Post et al. showed substantial 

heterogeneity in the projections when different models and methods were considered (Post 

et al., 2012). One such example found in this comparison of studies demonstrated a large 

discrepancy in O3-related excess mortality due to climate change among the studies 

examined (ranging from – 600 deaths to over 2500 deaths annually).

The primary drivers of ground-level O3 generation are precursor emissions (nitrogen oxides 

(NOx) and volatile organic compounds (VOCs)), presence of methane, and favorable 

meteorological conditions (Dawson et al., 2007; Jacob and Winner, 2009; Nolte et al., 2008). 

Because both emissions and meteorology vary in space, O3 concentrations can be spatially 

heterogeneous at the scale of a few kilometers to tens of kilometers (Diem, 2003). 

Therefore, spatially-resolved estimates of O3 levels are important when evaluating its 

potential impact on air quality and human health as well as developing applicable mitigation 

and adaptation policies. However, as Post et al. reported, the coarse spatial resolution of 

global climate models (GCMs) cannot resolve the fine-scale features in future O3 levels 

(Post et al., 2012).
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Both dynamical and statistical downscaling approaches have been developed to address this 

resolution incongruence. Dynamical downscaling involves executing high-resolution 

regional climate models (RCMs) and air quality models using GCM outputs as boundary 

conditions. This method integrates atmospheric chemistry composition, allowing for 

extrapolation of future atmospheric conditions (Nolte et al., 2008). However, the high 

computational demand (due to high-resolution, full-chemistry simulations) limits the 

application to multiple GCM outputs and reduces the availability of these methods (Gao et 

al., 2013; Gao et al., 2012; Murphy, 2000). Previous studies have used dynamical 

downscaling methods to study the impact of climate change on future O3 and air quality. At 

36 km resolution, Nolte et al. used dynamical downscaling methods to show significant 

increases in summer O3 and a lengthening of the O3 season under a high emissions scenario 

as well as substantial decreases during the summer season under a lower emissions scenario 

(Nolte et al., 2008).

Statistical downscaling methods use efficient statistical methods based on historical 

atmospheric patterns to relate coarse-resolution GCM simulations to finer grid results, which 

is much less computationally demanding (Gao et al., 2013). Previous studies have 

investigated the relationship between O3 and changes in meteorological conditions using 

statistical models. For example, Cox and Chu examined 100 meteorological variables for 

potential effects on ambient O3, and found that maximum surface temperature, wind speed, 

relative humidity, mixing layer, and cloud cover were significant. Both Dawson et al. and 

Camalier et al. found similar statistically significant results showing that daily maximum 

temperature, relative and absolute humidity, wind speeds, and mixing height greatly affect 

O3 concentration (Dawson et al., 2007; Cox and Chu, 1996; Camalier et al., 2007). The 

limitations of statistical downscaling are mainly due to the assumption that the statistical 

association between O3 levels and meteorological conditions will remain the same in the 

future, which may not be realistic given potential future variations in atmospheric chemistry 

and emissions (Mahmud et al., 2008).

In addition to air pollution levels estimated at fine spatial scales, the impacts on future O3 

levels due to climate change and future emissions need to be assessed separately for 

effective mitigation measures. Above all, the impact of air pollution emissions control can 

have a more immediate effect on air quality and subsequent human health than the effects 

from slowing down climate change (Fiore et al., 2015). Previously utilized emission 

scenarios, however, do not allow for such separation of O3 levels due to climate change and 

emissions. The latest Representative Concentration Pathways (RCPs) differ from previous 

emission scenarios such as the Special Report on Emissions Scenarios (SRES) by 

integrating current and planned environmental policies (IIASA, 2013; Moss et al., 2010; van 

Vuuren et al., 2011). As a result, RCP-based climate model simulations reflect the combined 

impact of both climate change and planned emission control on air pollutant levels (IIASA, 

2013). This integrated combination provides a platform to develop methods to examine the 

separate contributions of climate change and emissions. There are multiple RCP scenarios 

with underlying population growth, economic, and emissions assumptions. RCP2.6, 4.5 and 

6.0 all represent some form of improvement upon our current trajectory of growth and 

environmental policy. RCP8.5, however, represents a “business-as-usual” scenario in which 

nations choose to retain current economic, environmental, and social tracks. For example, 
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RCP4.5 represents a future scenario with medium to low greenhouse gas emissions, 

medium-level air pollution, less crop land, and low population growth. RCP8.5, on the other 

hand, is characterized by high population growth, low to medium crop land use, increasing 

trends for methane and nitrous oxide, and higher concentrations of almost all air pollutants 

(van Vuuren et al., 2011).

The objective of this study is to estimate the contribution of climate change and emissions 

control to future O3 levels separately at high spatial resolution in the Continental US. We 

present a hybrid dynamical-statistical downscaling approach to project and separate the 

impacts of climate change and air pollution emissions control on future O3 levels under both 

RCP4.5 and 8.5. Additionally, we expand our analysis and estimate county-level excess 

mortality due to projected O3 exposure in the 2050s and evaluate the spatial and temporal 

patterns of associated estimated health risks. The 2050s were selected for the future 

projected years based on the IPCC common use of 2050 as a threshold for major global 

temperature divergence (i.e. potential to rise above 2 °C) (IPCC, 2013).

2. Data and methods

Our four-step hybrid health impact projection approach is shown in Fig. 1. Step 1 involves a 

dynamical downscaling framework following two RCPs respectively. This framework is 

composed of a GCM, a RCM, and an atmospheric chemistry model, which estimates 

county-level O3 concentrations in the 2050s due to the combined effects of climate change 

and environmental policies as described in RCPs. Step 2 develops a statistical downscaling 

model to estimate future changes in O3 concentrations from climate change, which uses both 

real-world historical climate conditions and high-resolution future climate conditions 

simulated by the RCM in Step 1. Step 3 estimates the future change in O3 concentrations 

due to emissions only by subtracting the statistical downscaling results (Step 2) from the 

dynamical results (Step 1). Finally, in Step 4, the results from Steps 1–3 are placed in a 

human health context by estimating the future excess mortality due to projected changes in 

O3 concentrations.

2.1. Step 1: dynamical downscaling for O3 change due to changes in climate and air 
pollution emissions

The Community Earth System Model version 1.0 (CESM 1.0) is a state-of-the-art global 

climate model developed by the National Center for Atmospheric Research (NCAR) (Gent 

et al., 2011). As a fully coupled earth system model, there is a total of four components in 

CESM(Neale et al., 2010): 1) the land surface component - Community Land Model 

(CLM4) (Oleson et al., 2010); 2) the ocean model and sea ice component - Parallel Ocean 

Program version 2 (POP2) (Smith et al., 2010) and Los Alamos National Laboratory Sea Ice 

Model, version 4 (CICE4) (Hunke and Lipscomb, 2008); 3) the atmospheric chemistry 

module - adapted from the Model for Ozone And Related chemical Tracers version 4 

(MOZART-4) (Emmons et al., 2010); and 4) the bulk aerosol model (coupled to the 

atmospheric component Community Atmosphere Model, CAM4), referred to as CAM-

Chem (Emmons et al., 2010; Lamarque et al., 2005). More details regarding the 

configurations of CAM-Chem have been described in previous studies (Gao et al., 2013; 
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Lamarque et al., 2012). CESM/CAM-Chem was continuously run from 2001 to 2059 under 

both RCP4.5 and RCP8.5 with spatial resolution of 0.9° by 1.25°.

The dynamical downscaling framework was developed to conduct high resolution 

simulations (12 km) at two time slices from 2001 to 2004 for the baseline historical period 

and 2055 to 2059 for future scenarios under RCP 4.5 and RCP 8.5 (Gao et al., 2013; Gao et 

al., 2012). The Weather Research and Forecasting (WRF, version 3.2.1) and the Community 

Multi-scale Air Quality Model (CMAQ, version 5.0) (Wong et al., 2012), were used in this 

study and detailed information on model configurations and dynamical downscaling 

technique was described in Section 2 and 3 of Gao et al. (2013). Meteorological parameters 

such as hourly surface temperature, surface relative humidity, precipitation, zonal (U) and 

meridional (V) wind, planetary boundary layer height and pressure were generated by the 

WRF model whereas air pollutant concentrations such as O3 was simulated from CMAQ 

(Skamarock and Klemp, 2008). The historical emissions (2001–2004) were based on US 

EPA’s National Emission Inventory, whereas the future emissions of O3 precursors were 

scaled based on RCP4.5 and RCP8.5, and more details can be found in Gao et al. (2013). 

Thus, the CESM/WRF-CMAQ system simulates O3 concentrations in the 2050s that reflect 

the influence of both climate change (i.e., changes in future meteorology) and changes in 

anthropogenic emissions at 12 km spatial resolution (IIASA, 2013). The combined effect of 

climate and emissions on future ozone changes was investigated in Gao et al. (2013), and 

this study focuses on separating the effect of climate on future ozone concentrations. The 

detailed method is described in Section 2.2.

We first computed differences in maximum daily average eight-hour (MDA8) O3 between 

the 2000s and the 2050s for each 12 km grid cell and aggregated values to the 3109 counties 

to obtain annual county-level changes. To reduce the bias of model simulation, we calibrated 

future CMAQ MDA8 O3 levels based on the ratio of observed concentrations measured by 

the USEPA-AQS and the results of the year-round CMAQ-modeled historic MDA8 O3 

levels. A ratio method for calibration was preferred over the use of an additive bias 

correction. This technique was chosen primarily because, 1) the methods in this study design 

calculate changes between future and historical periods and an additive correction would be 

cancelled out, and 2) bias correction in this study is done spatially and ratio calibrations are 

more appropriate for capturing potential non-linearity. Each county was assigned a 

population-weighted centroid based on the centroids from the 2010 US Census. Using 40 

km radius buffers, the five closest CMAQ points to each county centroid are identified and 

average O3 values were calibrated using the ratios mentioned above (Kim et al., 2015). More 

details about the calibration method have been described elsewhere (Wu et al., 2014).

2.2. Step 2: statistical downscaling for O3 changes due to climate change

In order to estimate changes in O3 levels between the 2050s and 2000s caused by climate 

change alone, we first developed a regression model to predict O3 concentrations with 

meteorological variables from the North America Regional Reanalysis (NARR) dataset. The 

NARR dataset provides the base year (2001–2004) meteorological parameters for the 

statistical model. NARR is produced by the National Centers for Environmental Prediction 

and provides a wide range of observed climate parameters over North America on a 32 km 
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grid (NOAA/OAR/ESRL/PSD, 2013; Mesinger et al., 2006). Prior to modeling and analysis, 

we compared the CESM-WRF simulations against NARR values at the daily level, using a 

30-day moving average. Strong correlations of key variables between the two datasets 

confirmed the appropriateness of combining NARR and CESM-WRF in our approach (see 

Supplemental Table 1). For purposes of prediction, we computed annual medians of daily 

mean values for temperature, relative humidity, wind speed and direction, planetary 

boundary layer height, surface pressure and total annual precipitation for each 32 km 

(NARR) and 12 km (WRF) grid. We also calculated air stagnation which is defined as a day 

with surface daily wind speed < 3.2 m/s, wind speed at 500 hPa < 13 m/s, and slight or no 

precipitation (< 0.1 mm/day) (Wang and Angell, 1999). We then linked the MDA8 O3 

concentrations with the NARR meteorological data by selecting the nearest NARR cell to 

the closest USEPA O3 monitoring site. Model development included all sites having at least 

two years of data (1334 sites). In order to minimize impacts of short-term fluctuations and to 

focus on longer-term trends, we used a 30-day moving average window for all 

meteorological variables and MDA8 O3.

To establish the associations between meteorological variables and MDA8 O3, we developed 

a multiple linear regression (MLR) model. We included natural cubic splines of time (Julian 

day) to control for the long-term trend of O3 concentration (USEPA, 2013). Usage of natural 

cubic splines greatly improves the coefficients of determination (R2) for the model (Davis et 

al., 2011). The basic form of the model is as below:

y = β0 +
k = 1

8
βk xk + ns time + ε (1)

where y is the 30 day moving-average MDA8 O3 concentration; xk is the 30 day moving-

average value of the meteorological variables (temperature, relative humidity, planetary 

boundary height, pressure, precipitation, and two horizontal wind components); ns (time) is 

the natural cubic splines of time (Julian day: four degrees of freedom), and ε is model error. 

We fitted this model for each EPA O3 monitoring site. We matched the estimated regression 

coefficients (β0 and βk’s) of the MLR model with the changes in meteorological variables 

between the 2050s and 2000s to obtain projected changes in O3 levels. We then interpolated 

the site-specific O3 changes to all 3109 counties using a nearest-neighbor approach. The 

NARR-MLR model estimates the average annual amount of change in O3 attributable to 

climate change alone. We then demonstrated the appropriateness of the chosen model using 

a 10-fold cross validation.

2.3. Step 3: future O3 changes due to changes of air pollution emissions

In order to isolate changes in O3 concentration attributable to future air pollution emissions 

alone, we calculated the differences between the concentrations generated in the previous 

two steps. The hybrid dynamical downscaling model involving the CMAQ-simulated O3 

values represents the changes in future concentration attributable to a combination of climate 

change and change of anthropogenic emissions (ΔO3 climate change + emissions). The 

statistical downscaling model, on the other hand, is an estimation of changes in 
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concentration due to climate change alone (ΔO3 climate change). Thus, subtracting the 

statistical model (climate change only) from the dynamical model (climate change and 

emissions) we are left with an estimation of the average annual contributions (ppb) from air 

pollution emissions control policies alone ((ΔO3 emissions; see Eq. (2)).

Δ O3 climate change + emissions − Δ O3 climate change = Δ O3 emissions (2)

2.4. Step 4: population health impact of future O3 changes

Population and mortality rate estimates, as well as concentration response function (CRF) 

coefficients are required to estimate the excess mortality (EM) due to future changes in 

MDA8 O3 (ALA, 2015; Post et al., 2012; Fann et al., 2012). We utilize the four population 

projections developed by the Integrated Climate and Land-Use Scenarios (ICLUS) project: 

ICLUS Al, Bl, A2 and B2. ICLUS converts the global Special Report on Emissions 

Scenarios (SRES) settings into county-level projections (ALA, 2015; Post et al., 2012; 

USEPA, 2009; Voorhees et al.,2011). The SRES A1 storyline represents a scenario of rapid 

development, and slow population growth, while the A2 scenario represents regional 

economic development and much higher fertility rates. The B1 scenario assumes similar 

conditions to A1, with a larger emphasis on sustainable growth and lower domestic 

migration. The B2 scenario includes regional growth similar to A1 with moderate population 

growth, and much lower migration (USEPA, 2009). A comparison between the previous 

SRES projections and the new RCP projections has shown that climate conditions under 

RCP8.5 fall between the previous SRES A1 and A2 projections and RCP4.5 closely 

resembles atmospheric conditions under SRES B1 (van Vuuren and Carter, 2014). Each 

projected population was applied to both RCP4.5 and RCP8.5 scenarios to reflect the 

differences between low and high emissions scenarios with varying population conditions. It 

is important to note that ICLUS scenarios have varying spatial resolutions due to differing 

projections in land and economic growth and, therefore, absolute deaths are difficult to 

compare across scenarios (Agency, U. S. E. P., 2017). Therefore, we chose to normalize each 

ICLUS scenario independently from one another in order to compare national impact and 

across counties within each ICLUS scenario.

For the calculation of baseline mortality incidence, we used the predicted mortality rate for 

the year of 2050 at county level which is available from the Environmental Benefits 

Mapping and Analysis Program Community Edition 1.0.8 (BenMAP-CE) developed by the 

US Environmental Protection Agency (USEPA, 2012). The BenMAP-CE provides county-

specific mortality rates derived from projected age-specific ratios of 2050 mortality rates to 

2005 mortality rates.

We based CRFs on the association between non-accidental, all-cause mortality and short-

term exposure to MDA8 O3 as estimated by Bell et al. (RR = 1.0064 (95% CI: 1.0041–

1.0086) per 15 ppb) (Bell et al., 2004). The estimate from Bell et al. comes from the 

National Morbidity, Mortality, and Air Pollution Study (NMMAPS) dataset and covers 95 

major US cities (Bell et al., 2004). We estimated changes in EM at the county level using the 

following equation (Post et al., 2012; Fann et al., 2012):
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Δ yi = POPi × MRi × eγ × ΔCi − 1 (3)

where Δy is the expected number of deaths per year that may be attributed to changing air 

pollution levels (i.e., O3) at county i, POPi is population of county i; MRi is population 

mortality rate; γ is the concentration-response coefficient for MDA8 O3; and ΔCi, is the 

difference in concentrations of MDA8 O3 between future (2050s) and baseline (2000s) 

levels of MDA8 O3.

To evaluate the uncertainty of EM estimates attributable to the ranges of the CRF 

coefficients and mortality rates, we applied Monte Carlo simulations (10,000 random 

samples) for each county, assuming a normal distribution of independent county-specific 

means, mortality rates and standard errors of the population and concentration variables. We 

then estimated climate-region and national level EM estimates by summing the county-level 

EMs. We also estimate 95% confidence intervals (CIs) of the EMs based on the mean and 

standard deviation of the Monte Carlo simulations at both levels.

3. Results

3.1. Future O3 changes due to climate change

CESM/WRF simulations indicate wide spatial variations in the meteorological variables 

used as the future model inputs (Step 2) (Supplemental Fig. 1). Annual medians of daily 

mean temperature show an increase of approximately 1.2 °C and 2.3 °C across the 

continental US under RCP4.5 and RCP8.5, respectively, showing greater increases in the 

northeast, southeast, central, northwest, and southern climate regions than in the west and 

southwest regions (see Fig. 2A for NOAA-defined climate regions). Annual average relative 

humidity (RH) could increase 0.45% under RCP4.5 and 1.1% under RCP8.5, with higher 

increases in the Central region. Averages of planetary boundary layer height are projected to 

decrease by 24.0 m under RCP4.5 and 25.2 m under RCP8.5. Meridional (N/S) wind speed 

will decrease in most inland areas of the US under both RCPs, with highest decreases in the 

Northwest region. Zonal (E/W) wind speed will decrease in much of the US with some 

increase seen in the West and Southwest regions.

Fig. 2 depicts the MLR-estimated change in annual mean MDA8 O3 concentrations (2050s 

vs. 2000s) for both RCP4.5 and RCP8.5. For all 1334 O3 monitoring sites, the MLR model 

performs well with relatively high R2 values (average R2 = 0.74). Fig. 2C and D show the 

MDA8 O3 changes between the 2000s and the 2050s from the statistical down-scaling 

model. Climate change alone appears to cause some increase in MDA8 O3 average annual 

(ppb) concentration in most of the continental US except for some counties in the West and 

South regions. Overall, increases in MDA8 O3 due to climate change is projected to be 0.34 

ppb (std. error 0.03) and 0.50 ppb (std. error: 0.04) under RCP4.5 and RCP8.5, respectively. 

The model performance was confirmed using a 10-fold cross validation comparing the 

results of the study model to the results from a series of models configured using both 

training and testing data. The validation resulted in < 1% difference in root mean square 

error (RMSE) (~0.00001%).
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3.2. Future O3 levels due to climate change and changes in emissions

As simulated by the CESM/WRF-CMAQ system, modest climate change and strict 

emissions control under RCP4.5 result in a nationwide decrease in future MDA8 O3 levels 

(on average 2.85 ppb, std. error: 0.03) except in a few large urban centers including Los 

Angeles, Chicago, and New York (Fig. 2A). These hotspots of high O3 under RCP4.5 are 

likely caused by NOx decreases in large urban areas, resulting in reduced O3 titration and 

higher concentrations of O3 (Gao et al., 2013). Under RCP8.5, national mean O3 level is 

projected to increase by ~ 1.33 ppb annually (std. error: 0.03, Fig. 2B). With greater 

temperature rise, climate change only caused O3 levels to increase in more regions under 

RCP8.5 than under RCP4.5, but the spatial patterns of O3 changes are similar under these 

two scenarios (Fig. 2D).

3.3. Future O3 change due to changes of air pollution emissions

Under RCP4.5, average national MDA8 O3 due to emissions alone decreases by 3.19 ppb 

(std. error: 0.04, Fig. 2E). Comparing Fig. 2C and E, it is clear that the O3 reduction due to 

the assumed lower precursor emissions outweighs the O3 increase due to higher temperature 

under RCP4.5. On the other hand, changes in future emissions alone under RCP8.5 would 

cause O3 levels to increase in the US except in the mid-Atlantic and Southeastern region 

(Fig. 2F). Despite the emission reduction of O3 precursors across all RCPs (including CO, 

NOx and MVOCs), nationally averaged MDA8 O3 may increase by 0.93 ppb (std. error: 

0.05) in the 2050s under RCP8.5.

3.4. Population health impact of future O3

Fig. 3 displays the annual average, population-normalized county estimates for excess 

mortality in 2055–2059 for the ICLUS A2 scenario (high population growth) for both 

RCP4.5 and RCP8.5 per 100,000 persons. Emissions sources appear to play a significant 

role, especially in RCP8.5, with large increases in O3-related mortality for much of the West, 

Midwest, and Eastern US. Table 1 shows the estimated O3-related excess deaths by climate 

region for the ICLUS A2 scenario under RCP4.5 and RCP8.5. The highest excess deaths are 

found from emissions-only sources (compared to climate change only sources) under 

RCP8.5 with the West, Southeast, and Northeast regions showing the largest impact. Similar 

patterns are found for other ICLUS population scenarios and data can be found in 

Supplemental Tables 2 and 3.

Fig. 4 highlights the state of California—an area of the US known for its pollution and 

related health issues. Shown together are the county-level O3 and mortality results for 

RCP8.5. Hot spots of O3 concentration increases and O3-related EM can be seen in areas 

surrounding the San Francisco Bay and Los Angeles County. Notably, changes in O3 

concentration due to emissions appear to be highest in counties such as Los Angeles, 

Monterey, Orange, and San Joaquin. Meanwhile, O3 concentration due to emissions appears 

to be lowest in the upper counties and central valley. On the whole, under ICLUS A2 and 

RCP8.5, O3-related EM due to climate change alone may increase by 180 deaths/year (std. 

error: 23.92) while under RCP4.5, 110 (std. error: 21.63) excess deaths may be expected due 

to climate change. However, emissions may have a greater impact on estimated excess 

mortality in California exhibiting an increase of approximately 315 (std. error: 21.21) deaths 
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under RCP8.5. Under RCP4.5 excess deaths due to emissions can be expected to increase at 

much lower rates with only 87 (std. error: 8.98) deaths/year in the 2050s. In predictions 

including both sources, excess deaths under RCP8.5 for the state of California may exceed 

486 deaths/year (std. error: 44.13) while scenarios using RCP4.5 predict lower increases of 

230 deaths/year (std. error: 30.55).

4. Discussion

Our results point to significant differences in the contributions of climate and emissions 

mitigation to future O3. Under both RCP scenarios, future emissions control policy will 

likely have a substantial impact on O3 levels and its associated health effects. Our hybrid 

downscaling approach suggests that changes in emissions may be the source of the main 

incongruities between RCP4.5 and RCP8.5. Thus, while climate change alone may cause 

some adverse health effects due to poorer air quality, substantial and more immediate health 

benefits may be achieved by emission mitigation of O3 precursors regardless of changing 

climate conditions especially under RCP8.5.

In all RCPs, most emissions of O3 precursors are expected to decrease in the US due to 

nearly worldwide implementation of stricter environmental policies. However, the results 

under RCP8.5 suggest a rise in future O3 concentrations. It is important to note that, with the 

climate change effect removed, the predictions still include background O3 conditions. As is 

explained in Gao et al. (2013), the O3 changes in RCP8.5 primarily occurs in spring and 

winter, especially over the western US, due to increases in global methane emissions (60% 

by the end of 2050s). In summer and fall, particularly over the eastern US, the increase of 

methane emissions is offset by the large reduction in anthropogenic VOC and NOx 

emissions, leading to decrease of O3 concentrations (Gao et al., 2013). Increases of O3 in 

RCP 8.5 were also found across a majority of the troposphere in Young et al. (2013), which 

attributes the higher ozone concentration to large increase of methane and greater 

stratospheric influx (Young et al., 2013). The tropospheric ozone increase in RCP 8.5 was 

shown to enhance background ozone, further impacting regional modeling results through 

the boundary conditions. This enhanced background ozone can lead to elevated spring ozone 

in the western US and has also been documented by Lin et al. (2012).

Several recent studies have demonstrated findings comparable to our results regarding the 

ozone changes in RCP 4.5 and RCP 8.5 (Clifton et al., 2014; Rieder et al., 2015; Yahya et 

al., 2017). In particular, as is shown in Gao et al. (2013; Fig. 5c), the ozone increases largely 

disappear when the boundary conditions were cleaner and methane emission increases were 

removed in RCP 8.5. The effect of global background ozone increase on regional 

downscaling results through boundary conditions was further shown by a more recent 

sensitivity study (Yahya et al., 2017, Fig. 7i vs. Figure 7iii), showing clearly that the high 

ozone boundary conditions inherited from global models under RCP 8.5 contributed to 

majority of the ozone increases in US in regional model results (Yahya et al., 2017). Thus, 

the combination of global background ozone increases and methane emission increases may 

be the main contributing factor for increases in O3 and O3-related EM under RCP8.5. 

Researchers have evaluated and proposed that the control of methane emissions may be an 
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efficient way to reduce both tropospheric O3 and radiative forcing (Nolte et al., 2008; West 

and Fiore, 2005; West et al., 2013).

It is important to note that the estimated EM attributable to O3 changes vary significantly, 

showing both negative and positive results by region, as seen in Table 1 and Supplemental 

Tables 2 and 3. Additionally, relatively high standard deviations are captured for most of the 

regional predictions. These reflect the varying EM from county-to-county within the regions. 

Further uncertainty is introduced with the CRF values which have been derived from short-

term O3 exposure (robust long-term estimates remain unavailable in the literature) with the 

assumption that county-specific CRF coefficients are normally distributed. However, despite 

these limitations, the high-resolution hybrid downscaling system presented here allows the 

examination of EM at the county level, which is a major strength of our current study. As 

expected, county-level O3-related EM is high in counties with higher populations. However, 

US counties, in general, stand to benefit from emission changes under RCP4.5 scenarios.

Since climate change can have important ramifications in California such as more severe and 

frequent wildfires and air pollution episodes, it has been the focus of extensive air pollution 

and climate research (Mahmud et al., 2008; Fujita et al., 2016; He et al., 2016; Fujita et al., 

2013). For example, Mahmud et al. performed statistical downscaling methods in the state of 

California using temperature data from the National Center for Atmospheric Research 

(NCAR) Reanalysis and 1-hour maximum O3 values from two ground monitors (Mahmud et 

al., 2008). The air temperature data have a coarse spatial resolution (2.5° × 4°), which makes 

it difficult to be directly associated with daily O3 levels. Instead, linear regression models 

were developed between 850-hPa air temperature and quartiles of O3 concentrations, posing 

an obstacle when linking O3 exposure with population-specific concentration-response 

functions. Fujita et al., while using a high resolution (5 km) chose to utilize a chemical box 

model in which only one parameter was allowed to change at a time. While the methods 

vary significantly from those used in our study, the general trend of increasing O3 and 

emissions is still evident (Fujita et al., 2013). Additionally, He et al. designed a study at a 

relatively low resolution (30 km) using multiple scenarios: climate change only, emissions 

only, and a boundary effect. Using CMAQ and the Sparse Matrix Operator Kernel Emissions 

Model (SMOKE), these scenarios were based on SRES A1B and A1FI. Generally, A1B is 

similar to the RCP4.5 scenario used in our study in terms of greenhouse gas emission 

increases and anthropogenic emission decrease, however, A1FI is very different from 

RCP8.5. In A1fi, all anthropogenic emissions are projected to increase. In RCP8.5, 

VOC/NOx is actually projected to decrease with large increases in methane leading to 

consequent rises in ozone levels (He et al., 2016). Taken together, overall conclusions of 

these case studies are consistent with our results, but the use of hybrid downscaling and the 

updated RCP scenarios strengthens our current study and lends more insight into the 

nuances of future ozone changes.

While we have sought to improve on previous methods, some limitations remain. 

Uncertainties may lie in the estimation of the future mortality rate, CRF, population 

projection, the potential effect of interactions between temperature and O3, and O3 

concentration predictions (Brown et al., 2014; Chang et al., 2014; Deser et al., 2012; 

Henneman et al., 2017; Meehl and Stocker, 2007). We attempt to account for some 
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uncertainty by evaluating EM estimates using a robust Monte Carlo method. We 

acknowledge that other modeling frameworks have been proposed, however, we deemed our 

approach reasonable due to sufficient high model performance (Chang et al., 2014; 

Henneman et al., 2017). Exploration of additional techniques, though a future direction of 

study, was beyond the scope of this analysis. Another drawback lies in the cubic splines of 

time used in the model as they may underestimate the contribution of climate change to O3 

concentrations due to the removal of long-term trends. Additionally, the use of county-level 

resolution, while more precise than previous studies, may still cause some loss in detail of 

future O3 predictions. However, it is necessary to keep the resolution of this data consistent 

with the resolution of the health data for analysis purposes (i.e., health data kept at county 

level for privacy protection). Future efforts to improve on this analysis could include 

enhancements in pollutant data collection locations, the addition of co-pollutant effects, and 

the effects of pollutants on human morbidity.

5. Conclusions

The results of this study demonstrate that potential increases in premature death and in 

adverse health effects of climate change-induced O3 increases in the US may be 

substantially offset by the effect of emission reductions planned under RCP4.5. However, 

even with the reduction of O3 precursors, O3-related excess mortality may still increase in 

the US, due to increases in methane emissions under RCP8.5. Thus, with responsible 

emissions policy, the effects of emission reduction of O3 precursors is poised to significantly 

offset the adverse health effects of O3 due to climate change. To prevent adverse health 

effects of this potential driver, it is important to continue to intensify mitigation efforts 

towards both GHGs and O3 precursor emissions. These efforts are likely to avoid great cost 

to human health and quality of life.
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SRES Special Report on Emissions Scenarios
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Fig. 1. 
Study methods flow. Flow of study methods depicting both dynamical and statistical results. 

Isolation of O3 attributable to emissions accomplished by taking the difference between the 

two illustrated downscaling methods. Excess deaths calculated by source for climate change 

only, and combined climate and emissions changes. Isolation of O3 attributed to emissions is 

achieved by taking the difference between the two methods.
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Fig. 2. 
Average annual change in tropospheric O3. Changes in O3 concentrations between 2000s 

and 2050s. (A) O3 difference from combined climate change and emissions under RCP4.5; 

(B) O3 difference from combined climate change and emissions under RCP8.5; (C) O3 

difference from climate change under RCP4.5; (D) O3 difference from climate change under 

RCP8.5; (E) O3 difference from emissions only under RCP4.5; and (F) O3 difference from 

emissions only under RCP8.5. Numbers represent US Climate Regions as defined by the 

National Climatic Data Center: 1. Northeast, 2. Southeast, 3. East North Central, 4. Central, 

5. West North Central, 6. South, 7. Southwest, 8. Northwest, and 9. West (NCDC/NOAA, 

2013).
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Fig. 3. 
Change in mortality: RCPs 4.5 and 8.5 using ICLUS A2 Scenario. Annual averaged, county-

level excess mortality normalized by population. RCP4.5 (low emissions scenario) and 

RCP8.5 (high emissions scenario) results displayed by contributing source (combined 

effects, climate change and anthropogenic emissions). The combined effects represent the 

effects of both climate change and emissions.
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Fig. 4. 
Sample of results: California case study. Annual averaged, county-level changes In O3 and 

excess mortality normalized by population depicted for the state of California under 

RCP8.5.
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